Refine Your Search

Topic

Search Results

Technical Paper

Split-Injection Strategies under Full-Load Using DMF, A New Biofuel Candidate, Compared to Ethanol in a GDI Engine

2012-04-16
2012-01-0403
It is well known that direct injection (DI) is a technology enabler for stratified combustion in spark-ignition (SI) engines. At full load or wide-open throttle (WOT), partial charge stratification can suppress knock, enabling greater spark advance and increased torque. Such split-injection or double-pulse injection strategies are employed when using gasoline in DI (GDI). However, as the use of biofuels is set to increase, is this mode still beneficial? In the current study, the authors attempt to answer this question using two gasoline-alternative biofuels: firstly, ethanol; the widely used gasoline-alternative biofuel and secondly, 2,5-dimethylfuran (DMF); the new biofuel candidate. These results have been benchmarked against gasoline in a single-cylinder, spray-guided DISI research engine at WOT (λ = 1 and 1500 rpm). Firstly, single-pulse start of injection (SOI) timing sweeps were conducted with each fuel to find the highest volumetric efficiency and IMEP.
Technical Paper

Phenomenology of EGR in a Light Duty Diesel Engine Fuelled with Hydrogenated Vegetable Oil (HVO), Used Vegetable Oil Methyl Ester (UVOME) and Their Blends

2013-04-08
2013-01-1688
HVO contains paraffin only and UVOME is methyl ester with long chain alkyl while mineral diesel is complex compound and contains lots of aromatic and Naphthenic. This paper compares the effects of EGR on the two different types of biodiesels blends compared to diesel. The combustion performance and emissions of biodiesel blends of UVOME and HVO were investigated in a turbocharged direct injection V6 diesel engine with EGR swept from 0% to the calibration setting for diesel. The EGR sweep tests with increment of 5% were conducted at the engine speed of 1500 RPM for the load of between 72 Nm to 143 Nm, using sulfur-free diesel blended with UVOME and HVO at 30% and 60% by volume respectively. As the EGR rate was increased, the brake specific fuel consumption (BSFC) for each fuel was reduced at lower load but increased at higher load. The BSFC of mineral diesel was lower than UVOME blends and similar to the HVO blends.
Technical Paper

Numerical Study of DMF and Gasoline Spray and Mixture Preparation in a GDI Engine

2013-04-08
2013-01-1592
2, 5-Dimethylfuran (DMF) has been receiving increasing interest as a potential alternative fuel to fossil fuels, owing to the recent development of new production technology. However, the influence of DMF properties on the in-cylinder fuel spray and its evaporation, subsequent combustion processes as well as emission formation in current gasoline direct injection (GDI) engines is still not well understood, due to the lack of comprehensive understanding of its physical and chemical characteristics. To better understand the spray characteristics of DMF and its application to the IC engine, the fuel sprays of DMF and gasoline were investigated by experimental and computational methods. The shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques were used for measuring spray penetration, droplet velocity and size distribution of both fuels.
Technical Paper

Impacts of Low-Level 2-Methylfuran Content in Gasoline on DISI Engine Combustion Behavior and Emissions

2013-04-08
2013-01-1317
Research studies show that 2-methylfuran (MF) is a promising gasoline alternative regarding its positive effect on engine performance and emissions. Before using pure MF in spark ignition engines, it is more likely to be used in a low-level blended form in gasoline. An experimental research study was carried out to investigate the impacts of low-level MF content in gasoline (volumetric 10% MF in blend) on direct-injection spark-ignition (DISI) engine combustion behavior and emissions. The tests were conducted on a single-cylinder spray-guided DISI research engine at an engine speed of 1500 rpm under stoichiometric conditions. The engine loads of 3.5 ~ 8.5 bar IMEP were tested and gasoline-optimized spark timing was used. Furthermore, the effects of spark timing, exhaust gas recirculation (EGR) and valve overlap on NOx emissions were tested.
Technical Paper

GDI Engine Performance and Emissions with Reformed Exhaust Gas Recirculation (REGR)

2013-04-08
2013-01-0537
Exhaust Gas Fuel Reforming has potential to be used for on-board generation of hydrogen rich gas, reformate, and to act as an energy recovery system allowing the capture of waste exhaust heat. High exhaust gas temperature drives endothermic reforming reactions that convert hydrocarbon fuel into gaseous fuel when combined with exhaust gas over a catalyst - the result is an increase in overall fuel energy that is proportional to waste energy capture. The paper demonstrates how the combustion of reformate in a direct injection gasoline (GDI) engine via Reformed Exhaust Gas Recirculation (REGR) can be beneficial to engine performance and emissions. Bottled reformate was inducted into a single cylinder GDI engine at a range of engine loads to compare REGR to conventional EGR. The reformate composition was selected to approximate reformate produced by exhaust gas fuel reforming at typical gasoline engine exhaust temperatures.
Technical Paper

Effect of Hydrogen Addition on Natural Gas HCCI Combustion

2004-06-08
2004-01-1972
Natural gas has a high auto-ignition temperature, requiring high compression ratios and/or intake charge heating to achieve HCCI (homogeneous charge compression ignition) engine operation. Previous work by the authors has shown that hydrogen addition improves combustion stability in various difficult combustion conditions. It is shown here that hydrogen, together with residual gas trapping, helps also in lowering the intake temperature required for HCCI. It has been argued in literature that the addition of hydrogen advances the start of combustion in the cylinder. This would translate into the lowering of the minimum intake temperature required for auto-ignition to occur during the compression stroke. The experimental results of this work show that, with hydrogen replacing part of the fuel, a decrease in intake air temperature requirement is observed for a range of engine loads, with larger reductions in temperature noted at lower loads.
Technical Paper

Promotive Effect of Diesel Fuel on Gasoline HCCI Engine Operated with Negative Valve Overlap (NVO)

2006-04-03
2006-01-0633
It is well-known that gasoline is a poor fuel for HCCI operation due to its high autoignation temperature, while the major problem for diesel HCCI is that the ignition temperature of diesel fuel is too low so that diesel autoignites too early. Interestingly a blend of gasoline and diesel fuel could have desirable characteristics for HCCI operation. The negative valve overlap (NVO) is a practical and feasible control mode for production applications of the HCCI concept. At present, the most serious problem is the difficulty to control the moment of auto-ignition and extend the limited operating window of smooth HCCI operation. In this paper, the promotive effects of diesel fuel on gasoline HCCI combustion were experimentally examined. The diesel fuel as additive was added in advance in different proportion (10% and 20% by mass) into gasoline for the purpose of improving its ignitability. The experiments conducted on a gasoline HCCI engine which was naturally aspirated and unthrottled.
Technical Paper

Study on an Electronically Controlled Common-Rail Injection System for Liquefied Alternative Fuels

2005-05-11
2005-01-2085
Liquefied alternative fuels offer great potential benefits in reducing exhaust emissions and improving fuel economy of automotive engines. In order to achieve the best performance of the engine running with such fuels, it is critical to have an appropriate fuel system. In the present work, a new electronically controlled common-rail injection system has been specially designed and tested for the direct injection of liquefied alternative fuels, since a conventional pump-line-injector injection system in the conventional diesel engine was not suitable for the purpose. Experimental work has been carried out to examine and improve matching of the fuel injection system on a new fuel injection pump test bench. The preliminary engine bench test has demonstrated that this arrangement meets the requirement for the operating characteristics of a fuel injection system in a direct injection diesel engine operating with dimethyl ether (DME).
Technical Paper

An Experimental Study of Combustion Initiation and development in an Optical HCCI Engine

2005-05-11
2005-01-2129
The major characteristics of the combustion in Homogeneous Charge Compression Ignition (HCCI) engines, irrespective of the technological strategy used to enable the ‘controlled auto-ignition’, are that the mixture of fuel and air is preferably premixed and largely homogeneous. Ignition tends to take place simultaneously at multiple points and there is no bulk flame propagation as in conventional spark-ignition (SI) engines. This paper presents an experimental study of flame development in an optical engine operating in HCCI combustion mode. High resolution and high-speed charge coupled device (CCD) cameras were used to take images of the flame during the combustion process. Fuels include gasoline, natural gas (NG) and hydrogen addition to NG all at stoichiometric conditions, permitting the investigation of combustion development for each fuel. The flame imaging data was supplemented by simultaneously recorded in-cylinder pressure data.
Technical Paper

The Comparative Study of Gasoline and n-butanol on Spray Characteristics

2014-10-13
2014-01-2754
n-butanol has been recognized as a promising alternative fuel for gasoline and may potentially overcome the drawbacks of methanol and ethanol, e.g. higher energy density. In this paper, the spray characteristics of gasoline and n-butanol have been investigated using a high pressure direct injection injector. High speed imaging and Phase Doppler Particle Analyzer (PDPA) techniques were used to study the spray penetration and the droplet atomization process. The tests were carried out in a high pressure constant volume vessel over a range of injection pressure from 60 to 150 bar and ambient pressure from 1 to 5 bar. The results show that gasoline has a longer penetration length than that of n-butanol in most test conditions due to the relatively small density and viscosity of gasoline; n-butanol has larger SMD due to its higher viscosity. The increase in ambient pressure leads to the reduction in SMD by 42% for gasoline and by 37% for n-butanol.
Technical Paper

Investigation on the Performance of Diesel Oxidation Catalyst during Cold Start at L ow Temperature Conditions

2014-10-13
2014-01-2712
Cold start is a critical operating condition for diesel engines because of the pollutant emissions produced by the unstable combustion and non-performance of after-treatment at lower temperatures. In this research investigation, a light-duty turbocharged diesel engine equipped with a common rail injection system was tested on a transient engine testing bed to study the starting process in terms of engine performance and emissions. The engine (including engine coolant, engine oil and fuel) was soaked in a cold cell at −7°C for at least 8 hours before starting the test. The engine operating parameters such as engine speed, air/fuel ratio, and EGR rate were recorded during the tests. Pollutant emissions (Hydrocarbon (HC), NOx, and particles both in mode of nucleation and accumulation) were measured before and after the Diesel Oxidation Catalyst (DOC). The results show that conversion efficiency of NOx was higher during acceleration period at −7°C start than the case of 20°C start.
Technical Paper

A Study of Methodology for the Investigation of Engine Transient Performance

2014-10-13
2014-01-2714
Automotive engines especially turbocharged diesel engines produce higher level of emissions during transient operation than in steady state. In order to improve understanding of the engine transients and develop advanced technologies to reduce the transient emissions, the engine researchers require accurate data acquisition and appropriate post-processing techniques which are capable of dealing with noise and synchronization issues. Four alternative automated methods namely FFT (Fast Fourier Transform), low-pass, linear and zero-phase filters were implemented on in-cylinder pressure. The data of each individual cycle was compared and analyzed for the suitability of combustion diagnostic. FFT filtering was the best suited method since it eliminated most pressure fluctuation and provided smooth rate of heat release profiles for each cycle.
Technical Paper

An Experimental Study of EGR-Controlled Stoichiometric Dual-fuel Compression Ignition (SDCI) Combustion

2014-04-01
2014-01-1307
Using EGR instead of throttle to control the load of a stoichiometric dual-fuel dieseline (diesel and gasoline) compression ignition (SDCI) engine with three-way catalyst (TWC) aftertreatment is considered a promising technology to address the challenges of fuel consumption and emissions in future internal combustion engines. High-speed imaging is used to record the flame signal in a single-cylinder optical engine with a PFI+DI dual injection system. The premixed blue flame is identified and separated using green and blue channels in RGB images. The effects of injection timing on SDCI combustion are studied. An earlier injection strategy is found to be ideal for soot reduction; however, the ignition-injection decoupling problem results in difficulties in combustion control. It is also found that a split injection strategy has advantages in soot reduction and thermal efficiency.
Technical Paper

Effects of Biodiesel Feedstock on the Emissions from a Modern Light Duty Engine

2014-04-01
2014-01-1394
Biodiesel is an oxygenated alternative fuel made from vegetable oils and animal fats via transesterification and the feedstock of biodiesel is diverse and varies between the local agriculture and market scenarios. Use of various feedstock for biodiesel production result in variations in the fuel properties of biodiesel. In this study, biodiesels produced from a variety of real world feedstock was examined to assess the performance and emissions in a light-duty engine. The objective was to understand the impact of biodiesel properties on engine performances and emissions. A group of six biodiesels produced from the most common feedstock blended with zero-sulphur diesel in 10%, 30% and 60% by volume are selected for the study. All the biodiesel blends were tested on a light-duty, twin-turbocharged common rail V6 engine. Their gaseous emissions (NOx, THC, CO and CO2) and smoke number were measured for the study.
Technical Paper

Investigation on the Spray Characteristics of DMF- Isooctane Blends using PDPA

2014-04-01
2014-01-1408
Little research has been done on spray characteristics of 2,5-dimethylfuran (DMF), since the breakthrough in its production method as an alternative fuel candidate. In this paper, the spray characteristics of pure fuels (DMF, Isooctane) and DMF-Isooctane blends under different ambient pressures (1 bar, 3 bar and 7 bar) and injection pressures (50 bar, 100 bar and 150 bar) were studied using Phase Doppler Particle Analyzer (PDPA) and high speed imaging. Droplet velocity, size distribution, spray angle and penetration of sprays were examined. Based on the results, DMF had larger SMD and penetration length than isooctane. The surface tension of fuel strongly influenced spray characteristics. Increasing the surface tension by 26 % resulted in 12 % increase in SMD. Higher ambient pressure increased the drag force, but SMD was not influenced by the increased drag force. However, the increased ambient pressure reduced the injection velocity and We number resulting in higher SMD.
Technical Paper

Sensitivity Study of Battery Thermal Response to Cell Thermophysical Parameters

2021-04-06
2021-01-0751
Lithium-ion batteries (LiBs) have been widely used in electrified vehicles, and the battery thermal management (BTM) system is needed to maintain the temperature that is critical to battery performance, safety, and health. Conventionally, three-dimensional battery thermal models are developed at the early stage to guide the design of the BTM system, in which battery thermophysical parameters (radial thermal conductivity, axial thermal conductivity, and specific heat capacity) are required. However, in most literature, those parameters were estimated with greatly different values (up to one order of magnitude). In this paper, an investigation is carried out to evaluate the magnitude of the influence of those parameters on the battery simulation results. The study will determine if accurate measurements of battery thermophysical parameters are necessary.
Technical Paper

Pollutant Emissions of a Blended Plug-in Hybrid Electric Vehicle during High-Power Cold Starts

2023-09-29
2023-32-0096
To characterize emission performance and engine operating conditions during high-power cold starts (HPCS), a blended plug-in hybrid electric vehicle was tested over worldwide harmonized light-duty vehicle test cycle (WLTC), and a new cycle was developed to characterize HPCS. The results showed that the engine speed and load increased dramatically to high level during HPCS under the low temperature of coolant and catalysts. The higher concentration of particle number (PN) and NOx at higher speed and load, accounted for the higher emissions during HPCS. Besides, the cumulative PN emissions increased first and then decreased with the increasing coolant temperature.
X